If it's not what You are looking for type in the equation solver your own equation and let us solve it.
56t^2+t-57=0
a = 56; b = 1; c = -57;
Δ = b2-4ac
Δ = 12-4·56·(-57)
Δ = 12769
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{12769}=113$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-113}{2*56}=\frac{-114}{112} =-1+1/56 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+113}{2*56}=\frac{112}{112} =1 $
| ;x=4 | | 34=21x-5 | | 3(2x+1)+4(x-6)=5(2x+3) | | 4x+1=34+21x-5 | | -2q+340=6q+2 | | 3/7(x)=-9 | | 100+250p=3 | | -w+59=267 | | 4(6x+4)=160 | | -u+282=185 | | 3a/7+2/7=7/9 | | X+2x+30+3x=180 | | 160-u=91 | | 20x+3=83 | | p+(1-2)+p=1 | | 4(3x-45)=3(x+18) | | 90+2x=5x+13 | | 9+3.5g=11=0.5g | | 2208=x^2+26x+168 | | 25=3/2x | | 3x-5(-4x-3)=-54 | | 2x+8=19x | | 16-3p=2 | | P+(1-2p)+p=1 | | 81^x-1=9 | | 4x+48=169 | | ((X/3)-8)/12=(-2-x)/15 | | x-2(x+1)=4 | | 5(x-2)-3(x+2)=2(2x-7) | | (X/3-8)/12=(-2-x)/15 | | 7x-4=7x-x | | 5n-3=1.55n |